
Gran Premio de México 2021 - Primera Fecha

August 28th, 2021

Libro de soluciones

Este documento contiene las soluciones esperadas para los 13 problemas usados durante la competencia.

Las siguientes personas apoyaron desarrollando el set de problemas ya sea
creando o mejorando enunciados, soluciones, casos de prueba,

verificadores de entradas y salidas:

Lina Rosales

Saráı Ramı́rez

Eddy Ramı́rez

Leonel Juarez

Alan Enrique Ontiveros

Abraham Macias

Emilio López

Fernando Fiori

Moroni Silverio

Juan Pablo Maŕın

v1.0

Gran Premio de México 2021 - Primera Fecha 1

Alien Crop Triangles
Por : Emilio López

Para solucionar el problema, primero es necesario calcular el área total a cubrir, esto se logra sumando las áreas
de todos los triángulos de la entrada. Puede hacerse de forma sencilla utilizando la fórmula de Herón:

area =
√
s (s− a) (s− b) (s− c)

donde s es el semipeŕımetro:

s =
a+ b+ c

2

Ya conociendo el área en m2 a cubrir, pasamos a calcular los kg de semillas necesarios, redondeando para
arriba. El enunciado indica que se necesita 1 kg cada 30 m2, por lo que

kg necesarios = ceil
(area

30

)
Luego usamos una mochila (knapsack) para minimizar el costo de comprar los kg necesarios. Debemos

elegir la opción más barata que tiene al menos los kg necesarios – puede ser que resulte más barato comprar
kilos de más; no hace falta que sea exactamente la misma cantidad de kg calculada. Este costo será la solución
que imprimiremos.

Para finalizar, debemos tener especial cuidado de tratar los casos bordes de la entrada correctamente, entre
los que se destacan los siguientes dos:

• Si no hay ningún triángulo en la entrada, no es necesario comprar nada (salida 0).

• Si tenemos que comprar algo y las únicas bolsas disponibles están vaćıas (peso 0), no se podrá resolver el
problema (salida −1).

Gran Premio de México 2021 - Primera Fecha 2

Basel Problem
Por : Alan Enrique Ontiveros

Sea f(z) =
π cot(πz)

zn
una función, donde n ≥ 2. Esta función será útil para calcular ζ(n) usando el teorema

del residuo, porque f(z) tiene polos en cada entero.
Integrando f(z) sobre un cuadrado muy grande centrado en el origen del plano complejo, con vertices en

los puntos: {(N + 1/2)(1 + i), (N + 1/2)(−1 + i), (N + 1/2)(−1− i), (N + 1/2)(1− i)}, donde N →∞.
Se puede mostrar que:

∮
Γ
f(z)dz = 0. Por el teorema del residuo esa integral es:∮

Γ

f(z)dz = 2πi

∞∑
k=−∞

Resz=kf(z)

Comparando ambas expresiones, tenemos que:

∞∑
k=−∞

Resz=kf(z) = 0

Vemos que f(z) tiene polos de orden 1 en cada entero diferente de 0, esto es, si k 6= 0 es un entero, entonces:

Resz=kf(z) = lim
z→k

f(z)(z − k)

= lim
z→k

π cot(πz)(z − k)

zn

= lim
z→k

π cos(πz)(z − k)

sin(πz)zn

= lim
z→k

π cos(πz)

zn
· lim
z→k

z − k
sin(πz)

=
π cos(πk)

kn
· lim
z→k

1

π cos(πz)

=
π cos(πk)

kn
· 1

π cos(πk)

=
1

kn

Como n es un número par entero positivo, tenemos que:

2

∞∑
k=1

1

kn
+Resz=0f(z) = 0

ζ(n) = −1

2
Resz=0f(z)

Entonces, encontrar Resz=0f(z) es lo mismo que encontrar el coeficiente de z−1 en la serie de Laurent para

f(z), o de manera equivalente, encontrar el término constante en
πz cot(πz)

zn
.

Finalmente para encontrar todos los valores de ζ(n) al mismo tiempo, podemos observar que ζ(n) es el

coeficiente de zn en la serie de Taylor: −1

2
πz cot(πz).

Sabemos que ζ(n) =
pn
qn
πn, por lo que:

∞∑
n=0

n even

ζ(n)zn =

∞∑
n=0

n even

pn
qn

(πz)n = −1

2
πz cot(πz)

Sustituyendo x = πz, tenemos que:

g(x) =

∞∑
n=0

n even

pn
qn
xn = −1

2
x cot(x)

Gran Premio de México 2021 - Primera Fecha 3

Observemos que g(x) = −1

2
x cot(x) = −1

2
· cos(x)

sin(x)/x
es el cociente de dividir dos series de Taylor, y es la

función que genera todas las respuestas que buscamos.
Podemos extraer los primeros n coeficientes de manera eficiente usando FFT (NTT con el módulo 119 ×

223 + 1) tomando la convolución de cos(x) =
1

0!
− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · · con el inverso multiplicativo de

sin(x)/x =
1

1!
− 1

3!
x2 +

1

5!
x4 − 1

7!
x6 + · · · (el inverso se puede calcular usando el método de Newton-Raphson)

con una complejidad de O(n log n) si ignoramos los coeficientes después de xn de ambas series.

Gran Premio de México 2021 - Primera Fecha 4

Cypher Decypher
Por : Eddy Ramı́rez

Este es un problema clásico. Dado que el valor de los números nunca será mayor a 106, se puede usar una
criba para calcular los números primos. Una vez que se tenga la criba C podemos saber si un número es primo
si C[x] = 1 y no es primo si C[x] = 0. Ahora, si para cada valor i, j dado en la entrada, contamos cuantos
valores C[x] = 1 tales que i ≤ x ≤ j estaremos encontrando la respuesta correcta, pero, la iteración agregada
hará que el env́ıo sea rechazado por exceder el tiempo ĺımite de ejecución.

Podemos crear un nuevo arreglo S tal que S[x] = S[x − 1] + C[x], de esta manera podemos observar que
S[x] tiene el valor acumulado de cuántos números primos hay entre 1 e i (la suma de cuántos C[i] = 1 hasta
i). Usando este arreglo, podemos encontrar la cantidad de primos que hay entre i y j simplementa calculando
S[j]− S[i− 1].

Gran Premio de México 2021 - Primera Fecha 5

Delivering Pizza
Por : Moroni Silverio

La mejor manera de solucionarlo es un ingrediente a la vez ignorando los demás empezando por el primer
ingrediente, al leer la entrada sabemos cuáles serán los únicos que pasarán por ah́ı y deben atenderse según el
orden de la entrada.

Para los demás ingredientes, de igual manera enfocarse en el j-ésimo ingrediente si los ingredientes anteriores
han sido resueltos, ya que no se agregarán más pedidos a ese ingrediente después. Lo que se debe tener presente
es el momento en que la persona atendiendo el ingrediente J se desocupa, una vez que lo hace tiene a elegir a
todos los pedidos que llegaron antes de que se desocupara. Si no llegaron pedidos antes de eso, debe escoger el
primer pedido que llegará después de que se desocupe. Esto se hace con dos colas de prioridad, una para llevar
el control de los pedidos que llegaron antes de que se desocupara y otra para llevar el control de los pedidos que
llegan después de que se desocupe.

Gran Premio de México 2021 - Primera Fecha 6

Escape Room
Por : Moroni Silverio

Podemos observar que se puede dar la respuesta a cualquiera de las preguntas tales que la coordenada no
sea un ’.’ en el mapa con solo observar el mapa. Entonces, nos interesa encontrar cómo responder las preguntas
que se hagan a estas coordenadas: El problema de encontrar el camino más corto entre dos puntos en un mapa
como el entregado en la entrada es bien conocido que puede ser resuelto aplicando una búsqueda en amplitud,
entonces, una posible solución al problema seŕıa para cada consulta realizar la búsqueda en amplitur partiendo
de esa coordenada para encontrar el camino más corto hasta la salida, en caso de que exista algún camino. Esta
solución si bien es correcta, es muy lenta con la cantidad de consultas que se podŕıan dar como entrada, y seŕıa
rechazada por exceder el tiempo ĺımite de ejecución.

Una caracteŕıstica de la búsqueda en amplitud es que no solo encuentra el camino más corto partiendo de
un nodo origen a un destino, sino que encuentra el camino más corto del nodo origen a cualquier otro nodo que
es alcanzable en el mapa partiendo del origen, podemos observar que el camino más corto de una posición del
mapa a la salida, es el mismo que el de la salida hacia esa posición, entonces, podemos calcular el camino más
corto de cualquier posición del mapa a la salida realizando una búsqueda en amplitud que tenga como origen
la salida del mapa. Es importante tener en cuenta las prioridades con las que se debe responder en caso de que
un punto tenga más de un camino con la misma distancia a la salida. Una vez realizado este precómputo, se
puede calcular cada respuesta en O(1).

Gran Premio de México 2021 - Primera Fecha 7

Fixing Subtitles
Por : Moroni Silverio

Para solucionar el problema se tiene que “parsear” la entrada para separar los subt́ıtulos del tiempo en
el que comienzan. Teniendo esa información y el tiempo correctamente “parseado”, solo hay que sumar para
obtener la nueva hora. Todas las ĺıneas que no tienen una hora deben ser impresas como se reciben.

Se deben considerar casos donde el delay sea 0.

Gran Premio de México 2021 - Primera Fecha 8

Game of Baker
Por : Lina Rosales

Gran Premio de México 2021 - Primera Fecha 9

HeatWave
Por : Fernando Fiori

Primero describo una solución para un tamaño de w fijo y luego se puede extender a cualquier tamaño < 200.
Observación 1) quizás no se pueden reemplazar todas las ocurrencias de una palabra porque luego puede no

ser reversible la operación, se pueden reemplazar ocurrencias que no se superpongan. Ejemplo: T=000, w=00,
la operación correcta de reemplazos devuelve T’=20 o T’=02, pero nunca T’=22.

Observación 2) Si conozco todas las ocurrencias de una palabra w en T, una forma óptima de elegir los
reemplazos es elegir la primera ocurrencia de w (recorriendo T de izquierda a derecha), saltear |w| caracteres,
y repetir el proceso. No hay una manera que comprima más el texto que ésta. (Demostración, sea i el ı́ndice
de la primera ocurrencia de w en T, y j el ı́ndice de la siguiente ocurrencia, i < j. Supongamos que no elijo
i como reemplazo, pero śı j. Luego puedo seguir eligiendo ocurrencias de w en T que empiecen en j + |w|, o
sea en S = Tj+|w|...T|T |−1. Pero si hubiésemos elegido la ocurrencia de i, entonces podŕıamos seguir eligiendo
ocurrencias en R = Ti+|w|...T|T |−1. Pero S está contenido en R, y nunca vamos a encontrar más ocurrencias en
un pedazo de texto que en el texto completo, ya que puedo omitir esos primeros j-i caracteres. Con lo que elegir
j en vez de i no nos da una mejor solución.)

Ahora bien, si buscamos una |w| de un tamaño dado que nos maximice la compresión de T, podemos ir
recorriendo T hasheando la ventana de tamaño w. Podemos usar hash polinomial ya que el tamaño máximo de
la cadena es mayor que 64 bits. Vamos manteniendo un hashmap con hash de cadena como key, y como value un
par cantidad de ocurrencias occ, último ı́ndice donde se la vio last. De esta manera si last < indice actual−|w|,
entonces hago occ+ + y last = indice actual.

Una vez que termino de recorrer T reviso cada entrada del map y me quedo con la palabra de mayor cantidad
de ocurrencias.

Realizo este proceso para cada tamaño posible de w (de 2 a b) y me quedo con la mejor.
Luego es solamente hacer una cuenta y mostrar el resultado.
La complejidad final es O(|T | ∗ b), sin contar el costo de acceder a valores del hashmap.

Gran Premio de México 2021 - Primera Fecha 10

Introducing Teleporting Machine
Por : Moroni Silverio

Para obtener el timepo sin la maquina teletransportadora basta con sumar ciudad[n]− ciudad[i] para toda
i.

Ahora, para calcular el tiempo total con la maquina conectando las ciudades i y j necesitamos:

• El tiempo total sin maquina T .

• Lo que ahorramos en tiempo D: el numero de ciudades que usaran la maquina por la distancia que se
ahorrara que es la distancia entre i y j

• El costo de usar la máquina C: El numero ciudades que hay hasta i por el costo de usar la maquina

Entonces, cuando la máquina se pone entre las ciudades i y j, el costo será Ti,j = T −D+C, se debe encontrar
el i, j que minimiza el valor de Ti,j . Esto se puede lograr iterando sobre cada ciudad i donde se puede poner la
máquina y establecer j como la ciudad más lejana que está a una distancia menor o igual a los K kilómetros
máximos que puede conectar la máquina de transportación, encontrar la ciudad j para cada valor posible de i
se puede lograr con una busqueda binaria, y entonces el algoritmo para encontrar los valores i, j que minimizan
Ti,j es O(NlogN).

Gran Premio de México 2021 - Primera Fecha 11

Just Send the Email
Por : Abraham Maćıas

Sean los empleados nodos y las relaciones manager-subordinado aristas, la estructura de la organización de
la compañ́ıa forma un árbol enraizado en 1. En este problema se pide hallar el valor esperado de la distancia
entre un nodo aleatorio u del árbol a la hoja más cercana. Notar que de un nodo u se puede mover a cualquiera
de sus hijos o al padre, aśı que se podŕıa considerar un árbol no dirigido.

Para encontrar la respuesta, se puede hallar la suma de las distancias más cortas a una hoja desde cada
nodo. Para hallar la distancia más corta de un nodo a la hoja más cercana, se puede hacer una BFS (búsqueda
en amplitud) multi-origen desde todas las hojas hacia los demás nodos (hay que meter al inicio todas las hojas
a la cola y después ejecutar una BFS). La distancia inicial de cada hoja es 1.

Después de hallar la suma de las distancias, hay que multiplicarlo por el inverso multiplicativo modular de
n. Para hallar el inverso modular se puede usar el pequeño teorema de Fermat o el algoritmo extendido de
Euclides.

Gran Premio de México 2021 - Primera Fecha 12

Kids at the Party
Por : Saráı Ramı́rez

Se puede observar que para que una cantidad M de niños asistan a la fiesta, es necesrio que N mod M = 0.
Es decir que M sea un divisor de N . Dado que Jaime quiere que su amigo Churro siempre asista y que no puede
haber más de 6 niños en la fiesta, entonces el valor de M cumple que 2 ≤ M ≤ 6. Entonces, para encontrar
las diferentes cantidades de niños que pueden asistir a la fiesta será necesario encontrar todos los números M
con las restricciones dadas que sean divisores de N . Un inconveniente es que el valor N puede ser tan grande
que no se puede almacenar en un entero, entonces, se debe encontrar una estrategia que nos permita identificar
los posibles valores de M a pesar del tamaño del número. Una manera de realizar esto es aplicar criterios de
divisibilidad:

Se pueden utilizar criterios de divisibilidad de los números 2,3,4,5,6 para identificar los posibles valores de
M dado N :

• 2 es un divisor de N si el último d́ıgito de N es par.

• 3 es un divisor de N si la suma de los d́ıgitos de N es un múltiplo de 3

• 4 es un divisor de N si los últimos dos d́ıgitos de N son un múltiplo de 4

• 5 es un divisor de N si el último d́ıgito de N es 5 o 0.

• 6 es un divisor de N si 2 y 3 son divisores de N .

Gran Premio de México 2021 - Primera Fecha 13

Leonel and the powers of two
Por : Leonel Juárez

La notación que se le pide a Leonel, no es en realidad inventada por su profesor. Es como tal la función recur-
siva que se utiliza para hacer realizar el cálculo de un exponente con el algoritmo conocido como exponenciación
binaria: https://es.wikipedia.org/wiki/Exponenciaci%C3%B3n_binaria.

El problema entonces se reduce a implementar la función recursiva que define a la notación que se le pidió
a Leonel, teniendo cuidado de no dejar espacios en blanco y de que se sigue la impresión según las 3 reglas
definidas.

https://es.wikipedia.org/wiki/Exponenciaci%C3%B3n_binaria

Gran Premio de México 2021 - Primera Fecha 14

Moon Dancers
Por : Juan Pablo Maŕın

Una caracteŕıstica importante a notar en el problema, es que, debido a que todos los danzantes se sentarán
siempre en una posición tal que el ángulo es entero, entonces hay exactamente 359 posibles posiciones para
un danzante que se levanta para rotar hacia otro danzante, además como todos los danzantes que se levantan
rotarán el mismo ángulo, podemos pensar en una estrategia para resolver el problema en el que encontremos
el máximo número de parejas que se pueden hacer si los danzantes rotaran una cantidad fija R, y encontrar el
máximo entre los 359 valores que puede tomar R.

Dado R, podemos observar que el danzante i podrá ser pareja con el danzante j, si (i + R) mod 360 = j.
Definamos un grafo dirigido G, donde los vertices son cada una de las posiciones donde hay un danzante, y
existe una arista que sale de la posición i inicial de un danzante a la posición j si y solo si hay un danzante en
la posición j y el danzante de la posición i puede llegar al danzante j al hacer la rotación R. Dado G, podemos
visualizar el problema como colorear la máxima cantidad de nodos que nos sea posible usando dos colores A y
B , de modo que si dos nodos u, y v están coloreados y hay una arista que los une, entonces u está coloreado
del color A y v es de color B. Para realizar esta tarea observemos que por las caracteŕısticas que tienen las
rotaciones, cada vertice tendrá a lo más una arista de salida y una arista de entrada para cada una de las
rotaciones posibles, entonces, podremos verificar que no habrá cadenas ni ciclos que se intersecten en G, aśı,
si tomamos una componente conexa de G podŕıamos ”estirarla”de modo que se forme una ĺınea, debido a esta
caracteŕıstica, podemos ver que si la componente conexa tiene Cv nodos de G, entonces, se pueden hacer bCv

2 c
parejas de esa componente. Entonces, para contar cuántas parejas se pueden hacer en una rotación, basta con
sumar la cantidad de parejas que se pueden realizar por cada componente del grafo. La respuesta al problema
será el valor más grande que se obtenga después de obtener la respuesta para cada una de las 359 rotaciónes
posibles.

Gran Premio de México 2021 - Segunda Fecha

September 25th, 2021

Libro de soluciones

Este documento contiene las soluciones esperadas para los 11 problemas usados durante la competencia.

Las siguientes personas apoyaron desarrollando el set de problemas ya sea
creando o mejorando enunciados, soluciones, casos de prueba,

verificadores de entradas y salidas:

Eddy Ramı́rez

Abraham Macias

Alan Enrique Ontiveros

Roberto Soĺıs

Moroni Silverio

Juan Pablo Maŕın

v1.0

Gran Premio de México 2021 - Segunda Fecha 1

Alice Birthday
Por : Abraham Maćıas

Este problema se puede resolver con DP con máscaras de bits. Sea dp(mask, i) el número de formas de
eliminar aristas en el subgrafo inducido por los nodos en mask, de tal forma que hay i componentes conexas en
dicho subgrafo inducido después de eliminar dichas aristas. Un nodo u está en mask si el u-ésimo bit en mask
está prendido.

Calculemos la DP en orden creciente de mask. El valor de dp(mask, i) para i ≥ 2 se puede hallar de la
siguiente forma:

dp(mask, i) =
∑
sub

dp(sub, 1) ∗ dp(mask XOR sub, i− 1)

tal que sub es un subconjunto de mask y sub tiene al nodo lsb(mask), donde lsb(mask) es el menor nodo
en mask (el bit menos significativo prendido en mask).

La razón de porque esto funciona es que, cuando sumamos dp(sub, 1) ∗ dp(mask XOR sub, i− 1), estamos
sumando la cantidad de formas que hay de eliminar aristas tal que la componente conexa donde esta lsb(mask)
sea sub, y el resto de nodos en mask (mask XOR sub) estén repartidas en (i−1) componentes conexas. Aśı que
para hallar dp(mask, i), consideramos todas las posibles compenentes conexas donde puede estar lsb(mask).

El valor de dp(mask, 1) se puede hallar de la siguiente forma:

dp(mask, 1) = 2E(mask) −
n∑

i=2

dp(mask, i)

donde E(mask) es la cantidad de aristas en el subgrafo inducido por mask. La razón de esto es que hay
2E(mask) formas de eliminar las aristas en este subgrafo, aśı que la suma de todas las dp(mask, i) para i ≥ 1
debe ser igual a 2E(mask). Simplemente despejamos dp(mask, 1) para hallarlo.

La respuesta para una determinada K está en dp(2n − 1, k). Las submáscaras de cada máscara se pueden
hallar de la siguiente forma: https://cp-algorithms.com/algebra/all-submasks.html.

La complejidad es O(n ∗ (3n));

Gran Premio de México 2021 - Segunda Fecha 2

Benford’s Law
Por : Abraham Maćıas

Primero notemos que la respuesta se puede hallar utilizando la propiedad de linealidad sobre el valor
esperado. Para cada cubeta i y cada d́ıgito d, podemos calcular de forma separada cuánto aporta la cubeta i al
valor esperado de cd. Se puede ver que el valor esperado de cd se puede representar de la siguiente forma:

E(cd) =

n∑
i=1

Pi,d

Donde Pi,d es la probabilidad de que la cantidad de pelotas en la cubeta i tenga al d́ıgito d como primer
d́ıgito. Veamos una forma de calcular los valores de E(cd) en O(NM):

Para cada cubeta i de 1 a N , iteremos para cada j de 0 a M , y veamos cuál es la probabilidad de que
durante los M pasos restantes, Alan inserte j pelotas en la cubeta i. Hay

(
M
j

)
formas de elegir los j pasos en los

que Alan inserte las pelotas en la cubeta i, y para los M − j pasos restantes hay (N − 1)M−j formas de elegir
dónde insertar las pelotas restantes. En total existen NM formas de insertar las pelotas en los M pasos, aśı que
con todo lo anterior, si definimos a H(j) como la probabilidad de insertar j pelotas en la cubeta i, tenemos que:

H(j) =

(
M
j

)
∗ (N − 1)M−j

NM

Sólo basta obtener cuál es el primer d́ıgito de ai + j para saber cuál es el E(cd) al que aporta H(j).
Para mejorar la complejidad, hay que notar que en realidad no hace falta iterar por todas las j, ya que,

por ejemplo, cuando llegamos a ai + j = 100, sabemos que todos los números entre 100 y 199 tienen al 1 como
primer d́ıgito, aśı que podemos sumarle a E(c1) todos los H(j) tal que 100 ≤ ai + j ≤ 199 en tiempo constante
si precaulculamos las sumas de prefijos de H(j), y aśı con todos los rangos de números que tienen al mismo
primer d́ıgito.

Aśı que, si precalculamos todas las sumas de prefijos de H(j) y hacemos dichos saltos para los números que
tienen al mismo primer d́ıgito, podemos obtener una complejidad de O(max(ai) + M) para hacer el precalculo
y O(9 ∗ log10(K) ∗N) para obtener los valores esperados, ya que existen O(9 ∗ log10(K)) rangos de números que
tinen al mismo primer d́ıgito.

Gran Premio de México 2021 - Segunda Fecha 3

Cut the Deck!
Por : Juan Pablo Maŕın

Si bien se puede probar el juego después de hacer un corte para cada carta i, esto seŕıa O(N2) y con valores
grandes de N se excedeŕıa el tiempo de ejecución.

Observemos que, si iniciamos un contador en 0, y sumamos 1 cada que se tiene una carta azul, y le restamos
1 cada que se obtiene una carta roja, Bob perderá el juego cuando este contador se vuelva negativo (se han
visto más cartas rojas que azules). Podemos ver que, como existen la misma cantidad de cartas rojas y azules,
el contador siempre iniciará y terminará en 0 después de voltear todas las cartas. Entonces, si Bob hace el corte
en el punto donde este contador tiene el menor valor posible (convirtiendo ese en 0), podremos ver que en ese
juego el contador nunca será menor de 0 y por lo tanto Bob gana.

Entonces solo hay que encontrar el indice i más pequeño tal que el contador en ese punto sea el igual al
valor mı́nimo que obtiene el contador en la configuración inicial.

Gran Premio de México 2021 - Segunda Fecha 4

Dislike the Raisins
Por : Moroni Silverio

Llamemos T a la cantidad de unidades que tiene la caja de cereal, entonces T = C + R. Sea CS el total de
cucharadas que Jaime puede obtener de la caja, esto es CS = dT/Se

Para que Jaime obtenga la máxima cantidad de cucharadas sobresalientes, el necesitará que las cucharadas
que no son sobresalientes sea mı́nima, eso es cuando estas cucharadas tengan la máxima cantidad de pasas, sea
CR la cantidad de cucharadas que se pueden hacer llenando la cucharada con la máxima cantidad de pasas
que sea posible en cada una de ellas, esto es: CR = dR/Se Y entonces la máxima cantidad de cucharadas
sobresalientes que Jaime podrá obtener son CS − CR.

Para obtener la menor cantidad de cucharadas sobresalientes, podemos distribuir las pasas al menos una por
cucharada, entonces, la mı́nima cantidad de cucharadas sobresalientes que Jaime puede obtener será max(CS−
R, 0)

Gran Premio de México 2021 - Segunda Fecha 5

E-13 Storage Unit
Por : Roberto Soĺıs

Dados los tamaños de cada video, precalcular las sumas de prefijos de estos tamaños para poder eficientemente
calcular cual es la suma de videos de una posición i a una posición i+R− 1. Teniendo las sumas de prefijos se
podŕıan probar diferentes valores de R hasta encontrar uno que haga que la suma exceda de la capacidad, una
manera mas eficiente es hacer una búsqueda binaria sobre el valor de R. La solución seŕıa por tanto de O(N log
N).

Gran Premio de México 2021 - Segunda Fecha 6

Flipped Factorization
Por : Alan Enrique Ontiveros

0.1 Conceptos previos

• Sea f : N→ R una función que recibe un entero positivo y devuelve cualquier cosa. A f(n) la llamamos
función aritmética.

• Si f(n) es artimética y además cumple que f(mn) = f(m)f(n) para enteros positivos coprimos m y n,
es decir, con gcd(m,n) = 1, decimos además que f(n) es multiplicativa. Se ve que solo hay dos posibles
casos:

– f(n) = 0 para toda n ∈ N. Este caso no es interesante.

– f(1) = 1, asumiremos que toda función multiplicativa f(n) cumple con esto.

• Una función multiplicativa f(n) queda totalmente definida si sabemos a qué es igual en potencias de
primos, es decir, f(pa) para p primo y a ∈ N. Esto es cierto, pues podemos factorizar n en primos de
la forma n = p1

a1p2
a2 · · · , y como dos primos distintos siempre son coprimos, entonces por definición

f(n) = f(p1
a1p2

a2 · · ·) = f(p1
a1)f(p2

a2) · · · .

• Sean f(n) y g(n) dos funciones aritméticas. Definimos a la función h(n) =
∑
d|n

f(d)g
(n
d

)
como la

convolución de Dirichlet de f(n) y g(n) (la suma itera por todos los divisores positivos d de n) y escribimos
h(n) = (f ∗ g)(n).

• Teorema: si g(n) y h(n) son funciones multiplicativas, entonces su convolución de Dirichlet también es
multiplicativa.

• Sea f(n) una función aritmética, definimos a F (n) =

n∑
i=1

f(i) como la función de sumas parciales de f(n).

Usualmente, siempre usaremos minúsculas para la función aritmética y mayúsculas para su función de
sumas parciales.

0.2 Subproblema 1

Primero resolvamos este subproblema: sean h(n) y u(n) dos funciones aritméticas, y sea f(n) = (h ∗ u)(n)
su convolución de Dirichlet. ¿Cómo hallamos F (n) de forma eficiente? Por definición tenemos que:

F (n) =

n∑
i=1

f(i) =

n∑
i=1

∑
d|i

h(d)u

(
i

d

)
Reacomodemos la suma de la siguiente manera: vemos que cada entero i aporta todos sus divisores d a la

suma con el término h(d)u

(
i

d

)
. Ahora iteremos primero por los valores de d, entonces i es múltiplo de d y

podemos reindexar i = dk para k ∈ N. Vemos que d no puede exceder n y es al menos 1, entonces:

F (n) =

n∑
d=1

dk≤n∑
k=1

h(d)u

(
dk

d

)

=

n∑
d=1

h(d)

bn/dc∑
k=1

u(k)

La suma interior no es más que U (bn/dc), donde U(n) es la función de sumas parciales de u(n). Por lo
tanto:

F (n) =

n∑
d=1

h(d)U (bn/dc)

La ventaja de reacomodar la suma aśı es que muchas veces es fácil calcular U(n), incluso con complejidad
constante.

Gran Premio de México 2021 - Segunda Fecha 7

0.3 Subproblema 2

Del subproblema anterior supongamos que h(n) también es multiplicativa, con la restricción adicional de
que h(p) = 0 para cualquier primo p. ¿Esa restricción cómo ayuda a reducir la complejidad para hallar F (n)?
Sea d = p1

a1p2
a2 · · · dado en su factorización en primos, entonces h(d) = h(p1

a1)h(p2
a2) · · · , y si alguna ai es

igual a 1, tendremos que h(d) = 0. Eso quiere decir que para que h(d) sea distinto de cero, todos los exponentes
de cada primo de d deben ser al menos 2, a estos números d los llamaremos powerful.

¿Cuántos enteros positivos powerful hay menores o iguales a n? Hay O(
√
n), y la demostración se queda

como ejercicio. Por lo tanto, solo hay O(
√
n) términos en la expansión de F (n), y si tanto h(n) como U(n)

pueden hallarse con complejidad constante, tenemos que F (n) puede hallarse con una complejidad de O(
√
n).

Para generar todos los números powerful menores o iguales a n, podemos usar una DFS o BFS precalculando
todos los primos hasta b

√
nc.

0.4 Problema principal

Notemos que la transformación que le hacemos a un entero positivo m descrita en el problema puede
describirse con una función multiplicativa que cumple f(pa) = ap, y lo que queremos hallar es F (n). Si
pudiéramos hallar de forma adecuada h(n) y u(n) tales que:

• f(n) = (h ∗ u)(n)

• h(n) y u(n) son multiplicativas

• h(p) = 0

• U(n) se puede hallar fácilmente

entonces habremos resuelto el problema con una complejidad de O(
√
n).

De forma arbitraria (más bien al tanteo) podemos escoger u(n) = 1 e intentar “despejar” la función h(n):

f(p) = u(p) + h(p)

f(p2) = u(p2) + u(p)h(p) + h(p2)

f(p3) = u(p3) + u(p2)h(p) + u(p)h(p2) + h(p3)

f(p4) = u(p4) + u(p3)h(p) + u(p2)h(p2) + u(p)h(p3) + h(p4)

...

=⇒ h(p) = f(p)− 1 = 1− 1 = 0

=⇒ h(p2) = f(p2)− 1− h(p) = 2p − 1

=⇒ h(p3) = f(p3)− 1− h(p)− h(p2) = 3p − 1− (2p − 1) = 3p − 2p

=⇒ h(p4) = f(p4)− 1− h(p)− h(p2)− h(p3) = 4p − 1− (2p − 1)− (3p − 2p) = 4p − 3p

...

Y por inducción, podemos demostrar que h(pa) = ap − (a− 1)p para a ≥ 2.
Finalmente, tenemos que U(n) = n y que h(pa) prácticamente tiene complejidad constante, entonces mien-

tras calculamos los números powerful con la DFS/BFS, también hay que calcular simultáneamente el valor de
h(n).

Gran Premio de México 2021 - Segunda Fecha 8

Grid of Letters
Por : Juan Pablo Maŕın

Podŕıa ser tentador intentar simular todos los caminos (como se hace en un word search tradicional), pero
con las caracteŕısticas del problema hay much́ısimos caminos lo que haŕıa esta solución exceder el tiempo ĺımite
de ejecución.

Supongamos que la posición (i, j) tiene la letra c, el camino más grande que termina en esta posición será
1 + el máximo de los vecinos que tenga una letra c − 1. Entonces, podemos encontrar primero el camino más
grande que se puede hacer en todas las posiciones que tienen la letra ‘A’, después con la ‘B’, etc. . . y guardar
el valor más grande que se encuentre, si se almacenan previamente las posiciones en las que aparece cada una
de las letras en la matriz, la complejidad seŕıa O(N*M).

Gran Premio de México 2021 - Segunda Fecha 9

Haunted House
Por : Abraham Maćıas

El problema se puede resolver simulando los periodos activos de cada fantasma. Primero notemos que sólo
nos interesan los primeros MX = 105 +N segundos, ya que en el peor caso una persona que entra en el segundo
105 a la casa va a llegar a la últma habitación en el segundo 105 +N−1. Simulemos los primeros MX segundos.

Si suponemos que los periodos de actividad y descanso de un fantasma no son alterados por espantar a una
persona, entonces un fantasma con enerǵıa x va a tener O(MX

2x) periodos activos. Como las enerǵıas de los
fantasmas forman una permutación, la cantidad total de rangos activos será:

MX

2 ∗ 1
+

MX

2 ∗ 2
+

MX

2 ∗ 3
+ · · ·+ MX

2N
= (

MX

2
)(

1

1
+

1

2
+

1

3
+ ... +

1

N
)

La suma 1
1 + 1

2 + 1
3 +...+ 1

N es conocida como la suma harmónica, y tiende a O(log(N)), por lo que tendremos
O(MX ∗ log(N)) rangos activos en total.

¿Qué pasa con el hecho de que el fantasma tiene que descansar justo después de espantar a alguien? Notemos
que esto añadirá un rango adicional de descanso y después uno de actividad. Aśı que la cantidad total de rangos
activos será O(MX ∗ log(N)+M) en el peor caso. Si por cada rango activo podemos encontrar de forma óptima
si se espanta a alguna persona, entonces se podrá resolver el problema en tiempo.

Procesemos los fantasmas desde i = 0 hasta i = N − 1 y llevemos un BST (puede ser std::set en C++) con
el tiempo de llegada de todas las personas activas (que no han sido espantadas hasta el momento).

Para el fantasma i, simulemos todos los rangos activos de este fantasma empezando desde el segundo 0.
Para saber si este fantasma i espanta a alguien en el rango activo que empieza en el segundo x, búsquemos en
el BST si hay alguna persona activa que llegó en algún segundo del rango [x− i, x− i+ pi), ya que una persona
que visite la habitación i en el segundo T , tendŕıa que haber entrado a la casa en el segundo T − i, y si hay
múltiples personas que llegaron en ese rango, tomamos la que llegó primero. Esto se puede hacer en O(log(M))
con lower bound(x − i) de un std::set en C++. Si espanta a alguien, anotemos su respuesta, eliminemos a la
persona del BST (ya que abandona la casa) y simulemos el siguiente rango activo.

Complejidad: O((MX ∗ log(N) + M) ∗ log(M)).

Gran Premio de México 2021 - Segunda Fecha 10

Integer Multiplicative Persistence
Por : Juan Pablo Maŕın

Para este problema habŕıa que realizar la operacion tal como se indica en la descripción del problema. Para
hacer la multiplicación de cada d́ıgito se puede realizar obteniendo cada d́ıgito como el residuo de dividir el
número entre 10 y después quitarlo dividiendo el número entre 10, hasta que ya no haya más d́ıgitos que quitar.
Se repite este proceso hasta que la multiplicación resultanto tenga solo 1 d́ıgito y se regresa la cantidad de veces
que se tuvo que realizar la operación.

Gran Premio de México 2021 - Segunda Fecha 11

John in the Amusement Park
Por : Eddy Ramı́rez

Este problema se puede resolver utilizando DP. Al momento que abre el parque tiempo = 0 John debe tomar
la desición de participar o no participar en alguna de las atracciones. Suponiendo que John decide participar
en la atracción i iniciando en el tiempo ti,j , entonces John abrá recibido un total hi de felicidad en el tiempo
ti,j +di, y se encontrará con tener que tomar la misma desición que teńıa al principio, ¿Qué atracción de las que
puede participar que inician en ti,j + di le ayudaŕıa a obtener la máxima felicidad?. Podemos observar entonces
que hay una relación de recurrencia para la máxima felicidad H(tiempo) que John puede obtener que depende
de las atracciones en las que puede participar que inician en o después de tiempo, esto es, en las atracciones que
tienen algún ti,j ≥ tiempo, esta relación está dada entonces por:

H(tiempo) = max(H(ti,j + di) + hi)
Entonces si se implementa esta relación de recurrencia, buscamos el valor de H(0), el máximo que John

puede obtener desde que abre el parque. Manteniendo memorización en cada uno de los tiempos posibles, se
necesitará O(T) de memoria, y O(S2) en cómputo, donde S =

∑N
i=1 ti

Gran Premio de México 2021 - Segunda Fecha 12

K-Binary Repetitive Numbers
Por : Juan Pablo Maŕın, Abraham Maćıas, Alan Enrique Ontiveros

La idea de solución se basa en el principio de inclusión y exclusión. La observación importante es que una
cadena de tamaño K solo puede ser generada por cadenas más pequeñas con un tamaño d que divida a K.
Entonces, si tenemos que d divide a K las 2d cadenas de tamaño d se pueden concatenar K/d veces para tener
una cadena de tamaño K que es K-binary repetitive. Sin embargo, si contamos todas esas cadenas podŕıamos
estar contando cadenas de más. Si una cadena S es K-binary repetitive y es formada por una cadena de
tamaño d que a su vez es d-binary repetitive, entonces estaremos contando S tantas veces como divisores tenga
d. Consideremos entonces solo cadenas de longitud d = K/p tal que p es un número primo que divide a K,
entonces todas las 2d cadenas NO son K-binary repetitive. Entonces podemos contar todas las cadenas que
no son K-binary repetitive usando el teorema de inclusión exclusión con todos los subconjuntos que se pueden
generar de los factores primos p que dividen a K.

La cantidad de cadenas K-binary repetitive que hay será restar las cadenas no K-binary repetitive de las
posibles 2K cadenas, y esto es igual a:

2K −
w(K)∑
k=0

(−1)k
∑

1≤i1<···<ik≤w(K)

2K/
∏k

j=1 pik

Que tiene complejidad O(2w(K)) donde w(K) es la cantidad de factores primos de K.
Para poder responder de manera eficiente las preguntas hay que precomputar los factores primos de cada

posible N , esto se puede hacer con una criba en O(N).

La sesión de Upsolving, con la propuesta de como abordar la solución de los problemas, la
encuentras en el canal de Maratona de Programación de Brasil:
https://www.youtube.com/watch?v=wYdb8YWd87Q

Para ejercitar las soluciones, puedes utilizar los casos de prueba (entrada / salida) que se
comparten en el siguiente sitio: http://maratona.sbc.org.br/primfase21.html

https://www.youtube.com/watch?v=wYdb8YWd87Q
http://maratona.sbc.org.br/primfase21.html

	Conceptos previos
	Subproblema 1
	Subproblema 2
	Problema principal

